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SUMMARY 
In this paper we consider symmetric and antisymmetric periodic boundary conditions for flows governed 
by the incompressible Navier-Stokes equations. Classical periodic boundary conditions are studied as well 
as symmetric and antisymmetric periodic boundary conditions in which there is a pressure difference 
between inlet and outlet. The implementation of this type of boundary conditions in a finite element code 
using the penalty function formulation is treated and also the implementation in a finite volume code based 
on pressure correction. The methods are demonstrated by computation of a flow through a staggered tube 
bundle. 
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1. INTRODUCTION 

In many papers and text books'-* discretizations of the incompressible Navier-Stokes equations 
are described, but in general not much attention is paid to the incorporation of boundary 
conditions. However, for engineering applications the implementation of adequate boundary 
conditions is equally important for accuracy as the formulation and discretization of the 
differential equations itself. In this paper we shall consider three types of periodic and antiperiodic 
boundary conditions, namely 

(i) periodicity in velocity and pressure 
(ii) periodicity in velocity and pressure gradient 
(iii) antisymmetric periodicity in velocity and pressure gradient. 

The last two boundary conditions are combined with prescription of a given flow rate. 
Pure periodic boundary conditions arise for example in the case of an artificial cut in a region. 

Such artificial cuts naturally arise in the computation of a flow around an obstacle by finite 
volume techniques. 

Periodicity in velocity and pressure gradient in combination with a prescribed flow rate 
naturally arises in the case of a periodically repeated configuration. 

For example, experiments in a bundle of seven horizontal staggered pipes (Figure 1) by 
Simonin and Barcouda' show that for water flowing upwards at an average velocity of 1.06 m s-  
the flow becomes periodic around the fourth row from the bottom. Hence for the flow in the 
interior it suffices to compute the flow in the dashed computational region only. In this example 
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Figure 1. Computational region in array of staggered pipes with periodic boundary conditions 

the boundaries Tz, r4 and r5 are symmetry boundaries, whereas rl and r3 are periodic 
boundaries. In order to have a flow, it is necessary that the pressures at the left-hand side and 
right-hand sides differ by a constant. This unknown constant may be given implicitly by 
prescribing the flow rate Q. 

In this particular problem it is possible to reduce the computational domain still further by 
halving, as shown in Figure 2. In this case the boundary conditions at the boundaries rl and 
r3 are antisymmetric periodic instead of symmetric. 

Periodic boundary conditions with a given flow rate in combination with finite element 
methods have been treated by He uses an Uzawa-type scheme to solve the incompress- 

Figure 2. Computational region in array of staggered pipes with antiperiodic boundary conditions 
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ible Navier-Stokes equations. We shall extend his ideas to antiperiodic boundary conditions in 
combination with a penalty function formulation. 

PeriC' treats antisymmetric periodic boundary conditions in combination with a finite volume 
method. He uses artificial cells at  the inlet and outlet which are copies of the cells at the other 
side. Starting with some initial field, the flow at the next time step is computed. As boundary 
conditions at inlet and outlet the computed velocities at the corresponding other sides are copied 
from the preceding iteration. By iterating, this process converges to the correct values. However, 
this process requires approximately two to three times the usual number of iterations. 

2. FORMULATION OF THE PROBLEM 

We consider the non-stationary incompressible Navier-Stokes equations in general co-ordinates, 

U?" = 0, (2) 

(3) 
with p the viscosity, p the pressure, U" the contravariant velocity component and p the density 
of the fluid. In the formulation the standard tensor notation with summation convention is used; 
gap represents the metric tensor. See References 3, 4, 6 and 9 for details. In our present study 
we restrict ourselves to laminar, stationary flow although the work is motivated by a turbulent 
problem. 

For the sake of argument we restrict ourselves to a rectangular domain as shown in Figure 
3 with periodicity at the inlet and outlet boundaries rl and r3. We consider the following types 
of periodicity. 

where T " ~  represents the deviatoric stress tensor 

Tab = p(g"'ur7 + g'W7), 

Pure periodicity 

In this case the boundary conditions are given by 

Uleft = Uright, Pleft = Pright, 

r' I inlet outlet 1 r7 
hottom r2 

Figure 3. Periodicity at a rectangular domain 

'C x 

(4) 
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where u is the velocity vector and n is the outward-directed normal. The subscripts 'left' and 
'right' indicate that the values at the left- and right-hand sides respectively are meant. Of course 
u and p may vary along these boundaries. 

Periodicity with unknown jump in pressure 

difference between the left- and right-hand sides. Thus 
The boundary conditions for the velocity are the same as in (4), but there is a constant pressure 

au - 1  = - - I  , 
an left an right 

Plcfl = Plight + c .  (5c) 

To fix the unknown constant c, an extra condition is necessary. It is quite natural to prescribe 
the flow rate Q as 

Antisymmetric periodicity with unknown jump in pressure 

velocity component and the tangential direction get opposite signs. Hence 
This boundary condition very much resembles that of (5aH5c) and (6). However, the tangential 

(74  U'n(y ) l l e f t  = U'n(y top  - Y)Iright, 

p(Y)l left  = P(Ytop - Yllright + c, (74 

where t is the tangential vector, which is taken from bottom to top. Furthermore, condition (6) 
holds. 

3. SOLUTION BY FINITE ELEMENT TECHNIQUES 

To solve the incompressible Navier-Stokes equations, the standard Galerkin approach (SGA) 
is applied in this section. We restrict ourselves to extended quadratic triangles of Crouzeix- 
Raviart type.' Hence the velocity per element is approximated by an extended quadratic poly- 
nomial and the pressure per element is a linear discontinuous polynomial. 
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IROUTER 

I 

Table 11. The three PVM configurations used in the experiments 

ethernet A 

I DEC50001 

I 
ethernet B 

Workstation Relative speed 

PVM configuration A 

Host 
Frontal 
Node 1 : element contributions 
Node 2: element contributions 
Node 3: element contributions 

P VM configuration B 
Host 
Frontal 
Node 1: element contributions 
Node 2: element contributions 
Node 3: element contributions 
Node 4: element contributions 

PVM configuration C 
Host 
Frontal 
Node 1: element contributions 
Node 2: element contributions 
Node 3: element contributions 
Node 4: element contributions 
Node 5: element contributions 
Node 6: element contributions 
Node 7: element contributions 

DECstation 5000 
DECstation 5000 
DECstation 3100 A 
DECstation 3100 B 
DECstation 3100 C 

DECstation 5000 
DECstation 5000 
DECstation 5000 
DECstation 3100 A 
DECstation 3100 B 
DECstation 3100 C 

SG IRIS 
SG IRIS 
SG IRIS 
DECstation 5000 
DECstation 3100 A 
DECstation 3100 B 
DECstation 3100 C 
DG 200 A 
DG 200 B 

+- ROUTER PC 80386 

ethernet C 
Figure 6. Network topology of workstations used in this work 
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In the case of a stationary Stokes equation the discretization of equations (1H3) under the 
constraint (12) may be regarded as a minimization problem of the form 

min fuTSu - uTF 
Y 

under the constraints 

Lu = 0, (13b) 

RU = Q. (13c) 

Here Su represents the discretization of the stress tensor, F the discretization of the right-hand 
side and Lu = 0 the discretization of the continuity equation. 

One immediately shows that the Kuhn-Tucker relations associated with (13aH13c) can be 
formulated as 

SU + LTp + RT1 = F, ( 144 

Lu = 0, ( 14b) 

RU = Q. (W 
In the case of a continuous pressure approximation with pressure unknowns at the boundary 
of the element (Taylor-Hood element) the parameter 1 may easily be identified with the unknown 
constant c in (7e). In the case of a discontinuous pressure approximation such an identification 
is no longer clear, although one may expect a strong relation between 2, and c. 

From (13aH13c) it is quite trivial that the penalty function formulation of the stationary 
Navier-Stokes equations under the constraint (12) becomes 

SU + N(u)u + a,LTLu + a,RTRu = F + a,RTQ, (15) 

where a1 and a2 are penalty parameters and N(u)u denotes the discretization of the convection 
terms. 

The matrix a,RTR and the right-hand side term a,RTQ are built using an element containing 
all normal components of the velocity at the inlet. The boundary conditions for the pressure 
are satisfied implicitly by formulation (15). 

4. SOLUTION BY FINITE VOLUME TECHNIQUES 

Our finite volume discretization of the incompressible Navier-Stokes equations is based on a 
boundary-fitted staggered approach as described in References 3, 4, 6 and 10. The curved grid 
is mapped on to a rectangular domain and the invariant formulation (1H3) of the Navier-Stokes 
equations is used. With respect to the mapping it is supposed that only co-ordinates of the 
vertices of the cells are known. All geometrical coefficients including Christoffel symbols are 
computed by finite differences of the co-ordinates. In order to decouple velocity and pressure 
computation, a standard pressure correction method as described by Van Kan" is used. The 
non-linear equations are linearized by a standard Newton linearization and the systems of linear 
equations are solved by a preconditioned GMRESR method." 

The position of the unknowns in the staggered grid in the computational domain is sketched 
in Figure 4. 
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U* control volume 

Figure 4. Position of unknowns in staggered grid 
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Figure 5. Extension of computational domain with virtual cells 

In order to incorporate the periodic boundary condition (5a) or the antisymmetric boundary 
condition (7a), the equations for the normal velocity components at the inlet boundary are 
replaced by trivial equations making the velocity components of the left- and right-hand sides 
identical : 

~ . n l i n ~ e t  = ~ ‘ n l o u t , e t .  (16) 

In the antisymmetric case of course the correct unknowns must be coupled. In order to 
prescribe the other types of periodic boundary conditions, at both the left- and right-hand sides 
a column of virtual cells is introduced (see Figure 5). 

The virtual unknowns in the virtual cells, however, are in fact the real unknowns at the other 
side taking the possible antisymmetry into account. Of course in the virtual pressure unknowns 
it is necessary to incorporate the unknown pressure jump constant c from equation (5c). The 
standard finite volume method is applied for all internal velocity unknowns, but also for the 
normal components at the outlet boundary. 

In this way we get the following system of non-stationary non-linear equations: 

MU + SU + N(u)u + GTp + GTc = F, 

DU = 0, 

RU = Q. 
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Su, N(u)u, Ru = Q and F have exactly the same meaning as in (14a)-(14c), although their contents 
are completely different. GTp represents the discretization of Vp except for the unknown constant, 
whose contribution is stored in GTc. Note that the matrix G has only non-zero entries in the 
points connected to inflow and outflow boundaries. Du = 0 gives the discretization of the 
continuity equation and Mu the discretization of the time derivative. In fact M is a diagonal 
matrix containing the value of p multiplied by the area of the corresponding control volume as 
diagonal elements. 

In order to solve equations (17a)-(17c), the standard Newton linearization is applied. 
Furthermore, we extend the pressure correction method as described by Van Kan" in order to 
incorporate the unknown c and the extra equation (17c). 

If we apply a standard &method to (17a)-(17c), we get the following system of non-linear 
equations: 

U"+' - u" 

At 
M + Osu"+l + (1 - 0)su" + OGTpn+l + (1 - B)GTp" 

Here s denotes the contribution of S and the matrix part of the linearization of N(u)u. The 
right-hand-side part of the linearization is put into the term P. 

Now we follow the usual approach with respect to pressure correction, where we treat the 
constant c in exactly the same way as the pressure p. Hence in equation (18a) u"" is replaced 
by a predictor u* and p and c are only introduced at the preceding time level: 

u* - u" 

At 
M- + eSu* + (1 - @Sun + G~~~ + cTCn = P+o, (19) 

in which p+' = t@'+' + (1 - 0)P. The velocity field u* does not only have to be projected on 
the space of divergence-free vector fields but also on those fields satisfying (17c). For this reason 
(19) is subtracted from (18a) and all terms involving s are neglected just as in the standard 
pressure correction method. This yields 

- u* ,,n+ 1 

M-- + 8GT(p" + - p") + BGT(cn + - c") = 0. 
At 

If we premultiply equation (20) by DM-'  and RM-' respectively and apply equations (18b) 
and (18c), we get 
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Since BRM-'cT is a number, c"+l - c" may be eliminated from (22) in order to get 
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Equation (23b) is a modified Laplacian-type equation to compute the pressure correction. From 
this correction c"+l - c" is computed by (23a) and finally u"+' - u" from (20). 

Since we use an iterative linear solver, it is not necessary to compute the matrix DM-' 
(cT - cTRM- 'GT/RM- 'cT) explicitly. It is sufficient to programme the corresponding 
matrix-vector multiplication. This is an important observation, since the computed matrix is 
a full matrix whereas each of its submatrices is very sparse. With respect to the precondi- 
tioning we limit ourselves to an incomplete LU decomposition of the matrix DM-'. The 
numerical experiments treated in Section 5 indicate that it is a rather good preconditioner. 

5. A NUMERICAL EXAMPLE 

In order to test the methods described in Sections 3 and 4, we consider a flow of water across 
a bundle of staggered pipes as shown in Figure 1. The computational region as plotted in Figure 
2 is considered, which means that the antisymmetric periodic conditions must be applied. 

The diameter of the pipes is 10.85 mm and the distance between the centroids of neighbouring 
pipes is 45 mm in both the horizontal and vertical directions. The mean velocity V, (from left 
to right) at the inlet is 1.06 m s-', which implies that the flow rate is given by Q = 0.01235 m3 s - l .  
The Reynolds number Re, is related to the diameter D of the pipes. Following PeriC,' who 
solved a similar problem, the flow has been computed for three Reynolds numbers, Re, = 15, 
45 and 140. 

Figure 6 shows the finite element mesh used, including the connection elements, which were 
introduced because of the antisymmetric periodicity. The corresponding finite volume grid is 
shown in Figure 7. 

Figure 6. Finite element mesh for staggered tube problem, including connection elements 
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Figure 7. Finite volume grid for staggered tube problem 

The finite element method has been solved using a penalty method and a direct linear solver 
(profile method). In this stationary code four ( R e ,  = 15) to six ( R e ,  = 140) Newton iterations 
were necessary to converge to the final solution. 

Figure 8 shows the computed streamlines for Re, = 140 and Figure 9 the corresponding 
isobars. In order to get a clearer view of the flow and pressure distribution, the computed results 
have been copied to a region consisting of four computational blocks. 

Of course in the p-copying of the pressure the unknown constant c is taken into account. 
Figures 10 and 11 show the streamlines and isobars in the compound region. The expected 
recirculation regions are clearly visible, just as is the case with regions of low and high pressure. 

The finite volume code is non-stationary and based on pressure correction. The linear systems 
of equations were solved by a GMRESR iterative solver. The converged results were very similar 
to the results of the finite element code. In fact the contour plots showed no visible difference. 
The convergence of the constant c showed exactly the same behaviour as the convergence of 

1 I 

Figure 8. Streamlines in tube problem for Re, = 140 



PERIODIC BOUNDARY CONDITIONS FOR INCOMPRESSIBLE FLOW 1163 

Figure 9. Isobars in tube problem for Re, = 140 

Figure 10. Streamlines in compound region consisting of four computational blocks 

Figure 11. Isobars in compound region consisting of four computational blocks 
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Figure 12. Convergence of unknown constant c as a function of time; At = OGO1 

the pressure to reach the stationary state. Figure 12 shows the constant c as a function of time. 
It is clear that our algorithm gives a very good convergence. 

To converge to the steady state, 75 time steps At  = 0401 s were necessary. The iterative solver 
for the momentum equations needed approximately 80 iterations for each time step. The number 
of iterations for the pressure equations was about 100 per time step in the non-preconditioned 
case. Preconditioning of the pressure matrix as described in Section 4 decreased the average 
number of iterations to seven. This shows that preconditioning based on the incomplete LU 
decomposition of the pressure part of (21) and (22) is an excellent preconditioner for the complete 
system (23b). 

6. CONCLUSIONS 

Two algorithms to implement periodic and antiperiodic boundary conditions in combination 
with a given flow rate and an unknown jump in the pressure have been derived. It has been 
demonstrated that these algorithms converge fast and are very well suited for their purpose. 
Although both algorithms are completely different and must be applied in different techniques 
for the solution of the incompressible Navier-Stokes equations, they both converge to exactly 
the same solution. 
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